Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 81390 / 19516
N 77.430215°
E 43.544312°
← 66.46 m → N 77.430215°
E 43.547058°

66.51 m

66.51 m
N 77.429617°
E 43.544312°
← 66.46 m →
4 420 m²
N 77.429617°
E 43.547058°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 81390 0…2zoom-1
    Kachel-Y ty 19516 0…2zoom-1
  2. Aus der Kartenposition x=0.620960235595703 y=0.148899078369141 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.620960235595703 × 217)
    floor (0.620960235595703 × 131072)
    floor (81390.5)
    tx = 81390
    Kachel-Y (ty) floor (y × 2zoom) floor (0.148899078369141 × 217)
    floor (0.148899078369141 × 131072)
    floor (19516.5)
    ty = 19516
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 81390 / 19516 ti = "17/81390/19516"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/81390/19516.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 81390 ÷ 217
    81390 ÷ 131072
    x = 0.620956420898438
    Y-Position (y) ty ÷ 2tz 19516 ÷ 217
    19516 ÷ 131072
    y = 0.148895263671875
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.620956420898438 × 2 - 1) × π
    0.241912841796875 × 3.1415926535
    Λ = 0.75999161
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.148895263671875 × 2 - 1) × π
    0.70220947265625 × 3.1415926535
    Φ = 2.20605612051498
    Länge (λ) Λ (unverändert) 0.75999161} λ = 0.75999161}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(2.20605612051498))-π/2
    2×atan(9.07983590683094)-π/2
    2×1.46110425682281-π/2
    2.92220851364563-1.57079632675
    φ = 1.35141219
    Länge in Grad λ ÷ π × 180° 0.75999161} ÷ 3.1415926535 × 180° lon = 43.544312°
    Breite in Grad φ ÷ π × 180° 1.35141219 ÷ 3.1415926535 × 180° lat = 77.430215°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 81390 KachelY 19516 0.75999161 1.35141219 43.544312 77.430215
    Oben rechts KachelX + 1 81391 KachelY 19516 0.76003954 1.35141219 43.547058 77.430215
    Unten links KachelX 81390 KachelY + 1 19517 0.75999161 1.35140175 43.544312 77.429617
    Unten rechts KachelX + 1 81391 KachelY + 1 19517 0.76003954 1.35140175 43.547058 77.429617
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.35141219-1.35140175) × R
    1.0440000000056e-05 × 6371000
    dl = 66.5132400003565m
    Rechte Seite abs(φORUR) × R abs(1.35141219-1.35140175) × R
    1.0440000000056e-05 × 6371000
    dr = 66.5132400003565m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(0.75999161-0.76003954) × cos(1.35141219) × R
    4.79299999999183e-05 × 0.217628562401984 × 6371000
    do = 66.4554996009383m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(0.75999161-0.76003954) × cos(1.35140175) × R
    4.79299999999183e-05 × 0.217638752160694 × 6371000
    du = 66.4586111663433m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.35141219)-sin(1.35140175))×
    abs(λ12)×abs(0.217628562401984-0.217638752160694)×
    abs(0.76003954-0.75999161)×1.01897587103383e-05×
    4.79299999999183e-05×1.01897587103383e-05×6371000²
    4.79299999999183e-05×1.01897587103383e-05×40589641000000
    ar = 4420.27407451057m²