Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 73274 / 76251
S 28.214869°
E 21.253052°
← 269.14 m → S 28.214869°
E 21.255799°

269.11 m

269.11 m
S 28.217290°
E 21.253052°
← 269.13 m →
72 426 m²
S 28.217290°
E 21.255799°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 73274 0…2zoom-1
    Kachel-Y ty 76251 0…2zoom-1
  2. Aus der Kartenposition x=0.559040069580078 y=0.581752777099609 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.559040069580078 × 217)
    floor (0.559040069580078 × 131072)
    floor (73274.5)
    tx = 73274
    Kachel-Y (ty) floor (y × 2zoom) floor (0.581752777099609 × 217)
    floor (0.581752777099609 × 131072)
    floor (76251.5)
    ty = 76251
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 73274 / 76251 ti = "17/73274/76251"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/73274/76251.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 73274 ÷ 217
    73274 ÷ 131072
    x = 0.559036254882812
    Y-Position (y) ty ÷ 2tz 76251 ÷ 217
    76251 ÷ 131072
    y = 0.581748962402344
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.559036254882812 × 2 - 1) × π
    0.118072509765625 × 3.1415926535
    Λ = 0.37093573
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.581748962402344 × 2 - 1) × π
    -0.163497924804688 × 3.1415926535
    Φ = -0.513643879428902
    Länge (λ) Λ (unverändert) 0.37093573} λ = 0.37093573}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-0.513643879428902))-π/2
    2×atan(0.598311427134906)-π/2
    2×0.539176977586634-π/2
    1.07835395517327-1.57079632675
    φ = -0.49244237
    Länge in Grad λ ÷ π × 180° 0.37093573} ÷ 3.1415926535 × 180° lon = 21.253052°
    Breite in Grad φ ÷ π × 180° -0.49244237 ÷ 3.1415926535 × 180° lat = -28.214869°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 73274 KachelY 76251 0.37093573 -0.49244237 21.253052 -28.214869
    Oben rechts KachelX + 1 73275 KachelY 76251 0.37098367 -0.49244237 21.255799 -28.214869
    Unten links KachelX 73274 KachelY + 1 76252 0.37093573 -0.49248461 21.253052 -28.217290
    Unten rechts KachelX + 1 73275 KachelY + 1 76252 0.37098367 -0.49248461 21.255799 -28.217290
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-0.49244237--0.49248461) × R
    4.22399999999712e-05 × 6371000
    dl = 269.111039999816m
    Rechte Seite abs(φORUR) × R abs(-0.49244237--0.49248461) × R
    4.22399999999712e-05 × 6371000
    dr = 269.111039999816m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(0.37093573-0.37098367) × cos(-0.49244237) × R
    4.79399999999686e-05 × 0.881180785570421 × 6371000
    do = 269.135293506451m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(0.37093573-0.37098367) × cos(-0.49248461) × R
    4.79399999999686e-05 × 0.881160814579689 × 6371000
    du = 269.129193851828m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-0.49244237)-sin(-0.49248461))×
    abs(λ12)×abs(0.881180785570421-0.881160814579689)×
    abs(0.37098367-0.37093573)×1.99709907322543e-05×
    4.79399999999686e-05×1.99709907322543e-05×6371000²
    4.79399999999686e-05×1.99709907322543e-05×40589641000000
    ar = 72426.4580047009m²