Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 62638 / 39393
N 58.122869°
W  7.959595°
← 161.30 m → N 58.122869°
W  7.956848°

161.31 m

161.31 m
N 58.121419°
W  7.959595°
← 161.30 m →
26 020 m²
N 58.121419°
W  7.956848°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 62638 0…2zoom-1
    Kachel-Y ty 39393 0…2zoom-1
  2. Aus der Kartenposition x=0.477893829345703 y=0.300548553466797 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.477893829345703 × 217)
    floor (0.477893829345703 × 131072)
    floor (62638.5)
    tx = 62638
    Kachel-Y (ty) floor (y × 2zoom) floor (0.300548553466797 × 217)
    floor (0.300548553466797 × 131072)
    floor (39393.5)
    ty = 39393
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 62638 / 39393 ti = "17/62638/39393"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/62638/39393.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 62638 ÷ 217
    62638 ÷ 131072
    x = 0.477890014648438
    Y-Position (y) ty ÷ 2tz 39393 ÷ 217
    39393 ÷ 131072
    y = 0.300544738769531
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.477890014648438 × 2 - 1) × π
    -0.044219970703125 × 3.1415926535
    Λ = -0.13892114
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.300544738769531 × 2 - 1) × π
    0.398910522460938 × 3.1415926535
    Φ = 1.25321436676713
    Länge (λ) Λ (unverändert) -0.13892114} λ = -0.13892114}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(1.25321436676713))-π/2
    2×atan(3.50158025058552)-π/2
    2×1.29261588222131-π/2
    2.58523176444261-1.57079632675
    φ = 1.01443544
    Länge in Grad λ ÷ π × 180° -0.13892114} ÷ 3.1415926535 × 180° lon = -7.959595°
    Breite in Grad φ ÷ π × 180° 1.01443544 ÷ 3.1415926535 × 180° lat = 58.122869°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 62638 KachelY 39393 -0.13892114 1.01443544 -7.959595 58.122869
    Oben rechts KachelX + 1 62639 KachelY 39393 -0.13887320 1.01443544 -7.956848 58.122869
    Unten links KachelX 62638 KachelY + 1 39394 -0.13892114 1.01441012 -7.959595 58.121419
    Unten rechts KachelX + 1 62639 KachelY + 1 39394 -0.13887320 1.01441012 -7.956848 58.121419
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.01443544-1.01441012) × R
    2.53199999999953e-05 × 6371000
    dl = 161.31371999997m
    Rechte Seite abs(φORUR) × R abs(1.01443544-1.01441012) × R
    2.53199999999953e-05 × 6371000
    dr = 161.31371999997m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-0.13892114--0.13887320) × cos(1.01443544) × R
    4.79399999999963e-05 × 0.528099430179618 × 6371000
    do = 161.295159256176m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-0.13892114--0.13887320) × cos(1.01441012) × R
    4.79399999999963e-05 × 0.528120931312329 × 6371000
    du = 161.301726255545m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.01443544)-sin(1.01441012))×
    abs(λ12)×abs(0.528099430179618-0.528120931312329)×
    abs(-0.13887320--0.13892114)×2.15011327111547e-05×
    4.79399999999963e-05×2.15011327111547e-05×6371000²
    4.79399999999963e-05×2.15011327111547e-05×40589641000000
    ar = 26019.651832372m²