Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 62182 / 38180
N 59.839296°
W  9.212036°
← 153.45 m → N 59.839296°
W  9.209289°

153.48 m

153.48 m
N 59.837915°
W  9.212036°
← 153.46 m →
23 552 m²
N 59.837915°
W  9.209289°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 62182 0…2zoom-1
    Kachel-Y ty 38180 0…2zoom-1
  2. Aus der Kartenposition x=0.474414825439453 y=0.291294097900391 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.474414825439453 × 217)
    floor (0.474414825439453 × 131072)
    floor (62182.5)
    tx = 62182
    Kachel-Y (ty) floor (y × 2zoom) floor (0.291294097900391 × 217)
    floor (0.291294097900391 × 131072)
    floor (38180.5)
    ty = 38180
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 62182 / 38180 ti = "17/62182/38180"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/62182/38180.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 62182 ÷ 217
    62182 ÷ 131072
    x = 0.474411010742188
    Y-Position (y) ty ÷ 2tz 38180 ÷ 217
    38180 ÷ 131072
    y = 0.291290283203125
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.474411010742188 × 2 - 1) × π
    -0.051177978515625 × 3.1415926535
    Λ = -0.16078036
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.291290283203125 × 2 - 1) × π
    0.41741943359375 × 3.1415926535
    Φ = 1.31136182600626
    Länge (λ) Λ (unverändert) -0.16078036} λ = -0.16078036}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(1.31136182600626))-π/2
    2×atan(3.7112243141952)-π/2
    2×1.30759452756209-π/2
    2.61518905512418-1.57079632675
    φ = 1.04439273
    Länge in Grad λ ÷ π × 180° -0.16078036} ÷ 3.1415926535 × 180° lon = -9.212036°
    Breite in Grad φ ÷ π × 180° 1.04439273 ÷ 3.1415926535 × 180° lat = 59.839296°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 62182 KachelY 38180 -0.16078036 1.04439273 -9.212036 59.839296
    Oben rechts KachelX + 1 62183 KachelY 38180 -0.16073242 1.04439273 -9.209289 59.839296
    Unten links KachelX 62182 KachelY + 1 38181 -0.16078036 1.04436864 -9.212036 59.837915
    Unten rechts KachelX + 1 62183 KachelY + 1 38181 -0.16073242 1.04436864 -9.209289 59.837915
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.04439273-1.04436864) × R
    2.40899999999211e-05 × 6371000
    dl = 153.477389999497m
    Rechte Seite abs(φORUR) × R abs(1.04439273-1.04436864) × R
    2.40899999999211e-05 × 6371000
    dr = 153.477389999497m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-0.16078036--0.16073242) × cos(1.04439273) × R
    4.79400000000241e-05 × 0.502427076470238 × 6371000
    do = 153.454161627036m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-0.16078036--0.16073242) × cos(1.04436864) × R
    4.79400000000241e-05 × 0.502447905010336 × 6371000
    du = 153.460523199309m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.04439273)-sin(1.04436864))×
    abs(λ12)×abs(0.502427076470238-0.502447905010336)×
    abs(-0.16073242--0.16078036)×2.08285400987718e-05×
    4.79400000000241e-05×2.08285400987718e-05×6371000²
    4.79400000000241e-05×2.08285400987718e-05×40589641000000
    ar = 23552.232391014m²