Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 58172 / 38620
N 59.226556°
W 20.225830°
← 156.27 m → N 59.226556°
W 20.223083°

156.28 m

156.28 m
N 59.225150°
W 20.225830°
← 156.28 m →
24 422 m²
N 59.225150°
W 20.223083°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 58172 0…2zoom-1
    Kachel-Y ty 38620 0…2zoom-1
  2. Aus der Kartenposition x=0.443820953369141 y=0.294651031494141 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.443820953369141 × 217)
    floor (0.443820953369141 × 131072)
    floor (58172.5)
    tx = 58172
    Kachel-Y (ty) floor (y × 2zoom) floor (0.294651031494141 × 217)
    floor (0.294651031494141 × 131072)
    floor (38620.5)
    ty = 38620
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 58172 / 38620 ti = "17/58172/38620"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/58172/38620.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 58172 ÷ 217
    58172 ÷ 131072
    x = 0.443817138671875
    Y-Position (y) ty ÷ 2tz 38620 ÷ 217
    38620 ÷ 131072
    y = 0.294647216796875
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.443817138671875 × 2 - 1) × π
    -0.11236572265625 × 3.1415926535
    Λ = -0.35300733
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.294647216796875 × 2 - 1) × π
    0.41070556640625 × 3.1415926535
    Φ = 1.29026959017343
    Länge (λ) Λ (unverändert) -0.35300733} λ = -0.35300733}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(1.29026959017343))-π/2
    2×atan(3.63376605133567)-π/2
    2×1.30224736361747-π/2
    2.60449472723493-1.57079632675
    φ = 1.03369840
    Länge in Grad λ ÷ π × 180° -0.35300733} ÷ 3.1415926535 × 180° lon = -20.225830°
    Breite in Grad φ ÷ π × 180° 1.03369840 ÷ 3.1415926535 × 180° lat = 59.226556°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 58172 KachelY 38620 -0.35300733 1.03369840 -20.225830 59.226556
    Oben rechts KachelX + 1 58173 KachelY 38620 -0.35295939 1.03369840 -20.223083 59.226556
    Unten links KachelX 58172 KachelY + 1 38621 -0.35300733 1.03367387 -20.225830 59.225150
    Unten rechts KachelX + 1 58173 KachelY + 1 38621 -0.35295939 1.03367387 -20.223083 59.225150
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.03369840-1.03367387) × R
    2.45299999999116e-05 × 6371000
    dl = 156.280629999437m
    Rechte Seite abs(φORUR) × R abs(1.03369840-1.03367387) × R
    2.45299999999116e-05 × 6371000
    dr = 156.280629999437m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-0.35300733--0.35295939) × cos(1.03369840) × R
    4.79400000000241e-05 × 0.511644696732499 × 6371000
    do = 156.269460116678m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-0.35300733--0.35295939) × cos(1.03367387) × R
    4.79400000000241e-05 × 0.511665772684107 × 6371000
    du = 156.275897254794m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.03369840)-sin(1.03367387))×
    abs(λ12)×abs(0.511644696732499-0.511665772684107)×
    abs(-0.35295939--0.35300733)×2.10759516074965e-05×
    4.79400000000241e-05×2.10759516074965e-05×6371000²
    4.79400000000241e-05×2.10759516074965e-05×40589641000000
    ar = 24422.3926779152m²