Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
16 / 50655 / 49389
S 67.026731°
E 98.256226°
← 238.39 m → S 67.026731°
E 98.261719°

238.40 m

238.40 m
S 67.028875°
E 98.256226°
← 238.37 m →
56 831 m²
S 67.028875°
E 98.261719°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 16 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 50655 0…2zoom-1
    Kachel-Y ty 49389 0…2zoom-1
  2. Aus der Kartenposition x=0.772941589355469 y=0.753623962402344 und der Vergrößerungsstufe zoom=16 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.772941589355469 × 216)
    floor (0.772941589355469 × 65536)
    floor (50655.5)
    tx = 50655
    Kachel-Y (ty) floor (y × 2zoom) floor (0.753623962402344 × 216)
    floor (0.753623962402344 × 65536)
    floor (49389.5)
    ty = 49389
    Kachel-Pfad (ti) "zoom/tx/tz" 16 / 50655 / 49389 ti = "16/50655/49389"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/16/50655/49389.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 50655 ÷ 216
    50655 ÷ 65536
    x = 0.772933959960938
    Y-Position (y) ty ÷ 2tz 49389 ÷ 216
    49389 ÷ 65536
    y = 0.753616333007812
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.772933959960938 × 2 - 1) × π
    0.545867919921875 × 3.1415926535
    Λ = 1.71489465
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.753616333007812 × 2 - 1) × π
    -0.507232666015625 × 3.1415926535
    Φ = -1.59351841716991
    Länge (λ) Λ (unverändert) 1.71489465} λ = 1.71489465}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-1.59351841716991))-π/2
    2×atan(0.203209377105483)-π/2
    2×0.200479586166954-π/2
    0.400959172333909-1.57079632675
    φ = -1.16983715
    Länge in Grad λ ÷ π × 180° 1.71489465} ÷ 3.1415926535 × 180° lon = 98.256226°
    Breite in Grad φ ÷ π × 180° -1.16983715 ÷ 3.1415926535 × 180° lat = -67.026731°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 50655 KachelY 49389 1.71489465 -1.16983715 98.256226 -67.026731
    Oben rechts KachelX + 1 50656 KachelY 49389 1.71499052 -1.16983715 98.261719 -67.026731
    Unten links KachelX 50655 KachelY + 1 49390 1.71489465 -1.16987457 98.256226 -67.028875
    Unten rechts KachelX + 1 50656 KachelY + 1 49390 1.71499052 -1.16987457 98.261719 -67.028875
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-1.16983715--1.16987457) × R
    3.74199999999547e-05 × 6371000
    dl = 238.402819999711m
    Rechte Seite abs(φORUR) × R abs(-1.16983715--1.16987457) × R
    3.74199999999547e-05 × 6371000
    dr = 238.402819999711m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(1.71489465-1.71499052) × cos(-1.16983715) × R
    9.58699999999979e-05 × 0.390301623368974 × 6371000
    do = 238.39145816491m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(1.71489465-1.71499052) × cos(-1.16987457) × R
    9.58699999999979e-05 × 0.390267170986335 × 6371000
    du = 238.370415070947m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-1.16983715)-sin(-1.16987457))×
    abs(λ12)×abs(0.390301623368974-0.390267170986335)×
    abs(1.71499052-1.71489465)×3.44523826388277e-05×
    9.58699999999979e-05×3.44523826388277e-05×6371000²
    9.58699999999979e-05×3.44523826388277e-05×40589641000000
    ar = 56830.687530512m²