Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
15 / 4525 / 5715
N 75.267033°
W130.286865°
← 310.68 m → N 75.267033°
W130.275879°

310.65 m

310.65 m
N 75.264239°
W130.286865°
← 310.74 m →
96 522 m²
N 75.264239°
W130.275879°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 15 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 4525 0…2zoom-1
    Kachel-Y ty 5715 0…2zoom-1
  2. Aus der Kartenposition x=0.138107299804688 y=0.174423217773438 und der Vergrößerungsstufe zoom=15 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.138107299804688 × 215)
    floor (0.138107299804688 × 32768)
    floor (4525.5)
    tx = 4525
    Kachel-Y (ty) floor (y × 2zoom) floor (0.174423217773438 × 215)
    floor (0.174423217773438 × 32768)
    floor (5715.5)
    ty = 5715
    Kachel-Pfad (ti) "zoom/tx/tz" 15 / 4525 / 5715 ti = "15/4525/5715"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/15/4525/5715.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 4525 ÷ 215
    4525 ÷ 32768
    x = 0.138092041015625
    Y-Position (y) ty ÷ 2tz 5715 ÷ 215
    5715 ÷ 32768
    y = 0.174407958984375
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.138092041015625 × 2 - 1) × π
    -0.72381591796875 × 3.1415926535
    Λ = -2.27393477
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.174407958984375 × 2 - 1) × π
    0.65118408203125 × 3.1415926535
    Φ = 2.04575512818552
    Länge (λ) Λ (unverändert) -2.27393477} λ = -2.27393477}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(2.04575512818552))-π/2
    2×atan(7.73499724758185)-π/2
    2×1.44222693536045-π/2
    2.88445387072091-1.57079632675
    φ = 1.31365754
    Länge in Grad λ ÷ π × 180° -2.27393477} ÷ 3.1415926535 × 180° lon = -130.286865°
    Breite in Grad φ ÷ π × 180° 1.31365754 ÷ 3.1415926535 × 180° lat = 75.267033°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 4525 KachelY 5715 -2.27393477 1.31365754 -130.286865 75.267033
    Oben rechts KachelX + 1 4526 KachelY 5715 -2.27374302 1.31365754 -130.275879 75.267033
    Unten links KachelX 4525 KachelY + 1 5716 -2.27393477 1.31360878 -130.286865 75.264239
    Unten rechts KachelX + 1 4526 KachelY + 1 5716 -2.27374302 1.31360878 -130.275879 75.264239
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.31365754-1.31360878) × R
    4.875999999987e-05 × 6371000
    dl = 310.649959999172m
    Rechte Seite abs(φORUR) × R abs(1.31365754-1.31360878) × R
    4.875999999987e-05 × 6371000
    dr = 310.649959999172m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-2.27393477--2.27374302) × cos(1.31365754) × R
    0.000191749999999935 × 0.25431445559861 × 6371000
    do = 310.680520801539m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-2.27393477--2.27374302) × cos(1.31360878) × R
    0.000191749999999935 × 0.254361612144691 × 6371000
    du = 310.738129089127m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.31365754)-sin(1.31360878))×
    abs(λ12)×abs(0.25431445559861-0.254361612144691)×
    abs(-2.27374302--2.27393477)×4.71565460816725e-05×
    0.000191749999999935×4.71565460816725e-05×6371000²
    0.000191749999999935×4.71565460816725e-05×40589641000000
    ar = 96521.8393839402m²