Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
16 / 30405 / 16070
N 67.191259°
W 12.980347°
← 236.80 m → N 67.191259°
W 12.974853°

236.81 m

236.81 m
N 67.189129°
W 12.980347°
← 236.82 m →
56 079 m²
N 67.189129°
W 12.974853°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 16 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 30405 0…2zoom-1
    Kachel-Y ty 16070 0…2zoom-1
  2. Aus der Kartenposition x=0.463951110839844 y=0.245216369628906 und der Vergrößerungsstufe zoom=16 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.463951110839844 × 216)
    floor (0.463951110839844 × 65536)
    floor (30405.5)
    tx = 30405
    Kachel-Y (ty) floor (y × 2zoom) floor (0.245216369628906 × 216)
    floor (0.245216369628906 × 65536)
    floor (16070.5)
    ty = 16070
    Kachel-Pfad (ti) "zoom/tx/tz" 16 / 30405 / 16070 ti = "16/30405/16070"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/16/30405/16070.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 30405 ÷ 216
    30405 ÷ 65536
    x = 0.463943481445312
    Y-Position (y) ty ÷ 2tz 16070 ÷ 216
    16070 ÷ 65536
    y = 0.245208740234375
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.463943481445312 × 2 - 1) × π
    -0.072113037109375 × 3.1415926535
    Λ = -0.22654979
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.245208740234375 × 2 - 1) × π
    0.50958251953125 × 3.1415926535
    Φ = 1.6009006997114
    Länge (λ) Λ (unverändert) -0.22654979} λ = -0.22654979}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(1.6009006997114))-π/2
    2×atan(4.9574956289721)-π/2
    2×1.37175251222627-π/2
    2.74350502445255-1.57079632675
    φ = 1.17270870
    Länge in Grad λ ÷ π × 180° -0.22654979} ÷ 3.1415926535 × 180° lon = -12.980347°
    Breite in Grad φ ÷ π × 180° 1.17270870 ÷ 3.1415926535 × 180° lat = 67.191259°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 30405 KachelY 16070 -0.22654979 1.17270870 -12.980347 67.191259
    Oben rechts KachelX + 1 30406 KachelY 16070 -0.22645391 1.17270870 -12.974853 67.191259
    Unten links KachelX 30405 KachelY + 1 16071 -0.22654979 1.17267153 -12.980347 67.189129
    Unten rechts KachelX + 1 30406 KachelY + 1 16071 -0.22645391 1.17267153 -12.974853 67.189129
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.17270870-1.17267153) × R
    3.71700000001418e-05 × 6371000
    dl = 236.810070000903m
    Rechte Seite abs(φORUR) × R abs(1.17270870-1.17267153) × R
    3.71700000001418e-05 × 6371000
    dr = 236.810070000903m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-0.22654979--0.22645391) × cos(1.17270870) × R
    9.58799999999926e-05 × 0.387656218932514 × 6371000
    do = 236.800375066112m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-0.22654979--0.22645391) × cos(1.17267153) × R
    9.58799999999926e-05 × 0.387690482120228 × 6371000
    du = 236.821304785037m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.17270870)-sin(1.17267153))×
    abs(λ12)×abs(0.387656218932514-0.387690482120228)×
    abs(-0.22645391--0.22654979)×3.42631877144339e-05×
    9.58799999999926e-05×3.42631877144339e-05×6371000²
    9.58799999999926e-05×3.42631877144339e-05×40589641000000
    ar = 56079.191586317m²