Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 18934 / 10749
N 81.724374°
W127.996216°
← 43.96 m → N 81.724374°
W127.993469°

43.96 m

43.96 m
N 81.723978°
W127.996216°
← 43.96 m →
1 933 m²
N 81.723978°
W127.993469°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 18934 0…2zoom-1
    Kachel-Y ty 10749 0…2zoom-1
  2. Aus der Kartenposition x=0.144458770751953 y=0.0820121765136719 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.144458770751953 × 217)
    floor (0.144458770751953 × 131072)
    floor (18934.5)
    tx = 18934
    Kachel-Y (ty) floor (y × 2zoom) floor (0.0820121765136719 × 217)
    floor (0.0820121765136719 × 131072)
    floor (10749.5)
    ty = 10749
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 18934 / 10749 ti = "17/18934/10749"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/18934/10749.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 18934 ÷ 217
    18934 ÷ 131072
    x = 0.144454956054688
    Y-Position (y) ty ÷ 2tz 10749 ÷ 217
    10749 ÷ 131072
    y = 0.0820083618164062
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.144454956054688 × 2 - 1) × π
    -0.711090087890625 × 3.1415926535
    Λ = -2.23395540
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.0820083618164062 × 2 - 1) × π
    0.835983276367188 × 3.1415926535
    Φ = 2.62631891948402
    Länge (λ) Λ (unverändert) -2.23395540} λ = -2.23395540}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(2.62631891948402))-π/2
    2×atan(13.822793320074)-π/2
    2×1.49857786342387-π/2
    2.99715572684773-1.57079632675
    φ = 1.42635940
    Länge in Grad λ ÷ π × 180° -2.23395540} ÷ 3.1415926535 × 180° lon = -127.996216°
    Breite in Grad φ ÷ π × 180° 1.42635940 ÷ 3.1415926535 × 180° lat = 81.724374°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 18934 KachelY 10749 -2.23395540 1.42635940 -127.996216 81.724374
    Oben rechts KachelX + 1 18935 KachelY 10749 -2.23390746 1.42635940 -127.993469 81.724374
    Unten links KachelX 18934 KachelY + 1 10750 -2.23395540 1.42635250 -127.996216 81.723978
    Unten rechts KachelX + 1 18935 KachelY + 1 10750 -2.23390746 1.42635250 -127.993469 81.723978
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(1.42635940-1.42635250) × R
    6.90000000003188e-06 × 6371000
    dl = 43.9599000002031m
    Rechte Seite abs(φORUR) × R abs(1.42635940-1.42635250) × R
    6.90000000003188e-06 × 6371000
    dr = 43.9599000002031m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-2.23395540--2.23390746) × cos(1.42635940) × R
    4.79399999999686e-05 × 0.143935242572314 × 6371000
    do = 43.9615279746998m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-2.23395540--2.23390746) × cos(1.42635250) × R
    4.79399999999686e-05 × 0.143942070719939 × 6371000
    du = 43.9636134667408m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(1.42635940)-sin(1.42635250))×
    abs(λ12)×abs(0.143935242572314-0.143942070719939)×
    abs(-2.23390746--2.23395540)×6.82814762448247e-06×
    4.79399999999686e-05×6.82814762448247e-06×6371000²
    4.79399999999686e-05×6.82814762448247e-06×40589641000000
    ar = 1932.59021262304m²