Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
12 / 1125 / 3279
S 72.790088°
W 81.123047°
← 2 891.57 m → S 72.790088°
W 81.035156°

2 889.44 m

2 889.44 m
S 72.816073°
W 81.123047°
← 2 887.33 m →
8 348 888 m²
S 72.816073°
W 81.035156°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 12 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 1125 0…2zoom-1
    Kachel-Y ty 3279 0…2zoom-1
  2. Aus der Kartenposition x=0.2747802734375 y=0.8006591796875 und der Vergrößerungsstufe zoom=12 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.2747802734375 × 212)
    floor (0.2747802734375 × 4096)
    floor (1125.5)
    tx = 1125
    Kachel-Y (ty) floor (y × 2zoom) floor (0.8006591796875 × 212)
    floor (0.8006591796875 × 4096)
    floor (3279.5)
    ty = 3279
    Kachel-Pfad (ti) "zoom/tx/tz" 12 / 1125 / 3279 ti = "12/1125/3279"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/12/1125/3279.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 1125 ÷ 212
    1125 ÷ 4096
    x = 0.274658203125
    Y-Position (y) ty ÷ 2tz 3279 ÷ 212
    3279 ÷ 4096
    y = 0.800537109375
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.274658203125 × 2 - 1) × π
    -0.45068359375 × 3.1415926535
    Λ = -1.41586427
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.800537109375 × 2 - 1) × π
    -0.60107421875 × 3.1415926535
    Φ = -1.88833034983325
    Länge (λ) Λ (unverändert) -1.41586427} λ = -1.41586427}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-1.88833034983325))-π/2
    2×atan(0.151324256598263)-π/2
    2×0.150184811813192-π/2
    0.300369623626384-1.57079632675
    φ = -1.27042670
    Länge in Grad λ ÷ π × 180° -1.41586427} ÷ 3.1415926535 × 180° lon = -81.123047°
    Breite in Grad φ ÷ π × 180° -1.27042670 ÷ 3.1415926535 × 180° lat = -72.790088°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 1125 KachelY 3279 -1.41586427 -1.27042670 -81.123047 -72.790088
    Oben rechts KachelX + 1 1126 KachelY 3279 -1.41433029 -1.27042670 -81.035156 -72.790088
    Unten links KachelX 1125 KachelY + 1 3280 -1.41586427 -1.27088023 -81.123047 -72.816073
    Unten rechts KachelX + 1 1126 KachelY + 1 3280 -1.41433029 -1.27088023 -81.035156 -72.816073
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-1.27042670--1.27088023) × R
    0.000453529999999924 × 6371000
    dl = 2889.43962999952m
    Rechte Seite abs(φORUR) × R abs(-1.27042670--1.27088023) × R
    0.000453529999999924 × 6371000
    dr = 2889.43962999952m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-1.41586427--1.41433029) × cos(-1.27042670) × R
    0.00153397999999982 × 0.295873304430251 × 6371000
    do = 2891.56583357676m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-1.41586427--1.41433029) × cos(-1.27088023) × R
    0.00153397999999982 × 0.29544004982785 × 6371000
    du = 2887.33164216178m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-1.27042670)-sin(-1.27088023))×
    abs(λ12)×abs(0.295873304430251-0.29544004982785)×
    abs(-1.41433029--1.41586427)×0.000433254602400845×
    0.00153397999999982×0.000433254602400845×6371000²
    0.00153397999999982×0.000433254602400845×40589641000000
    ar = 8348887.83515962m²