Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 102010 / 97738
S 65.885948°
E100.178833°
← 124.76 m → S 65.885948°
E100.181579°

124.74 m

124.74 m
S 65.887070°
E100.178833°
← 124.75 m →
15 562 m²
S 65.887070°
E100.181579°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 102010 0…2zoom-1
    Kachel-Y ty 97738 0…2zoom-1
  2. Aus der Kartenposition x=0.778278350830078 y=0.745685577392578 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.778278350830078 × 217)
    floor (0.778278350830078 × 131072)
    floor (102010.5)
    tx = 102010
    Kachel-Y (ty) floor (y × 2zoom) floor (0.745685577392578 × 217)
    floor (0.745685577392578 × 131072)
    floor (97738.5)
    ty = 97738
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 102010 / 97738 ti = "17/102010/97738"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/102010/97738.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 102010 ÷ 217
    102010 ÷ 131072
    x = 0.778274536132812
    Y-Position (y) ty ÷ 2tz 97738 ÷ 217
    97738 ÷ 131072
    y = 0.745681762695312
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.778274536132812 × 2 - 1) × π
    0.556549072265625 × 3.1415926535
    Λ = 1.74845048
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.745681762695312 × 2 - 1) × π
    -0.491363525390625 × 3.1415926535
    Φ = -1.54366404156505
    Länge (λ) Λ (unverändert) 1.74845048} λ = 1.74845048}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-1.54366404156505))-π/2
    2×atan(0.213597037459257)-π/2
    2×0.210434798168004-π/2
    0.420869596336007-1.57079632675
    φ = -1.14992673
    Länge in Grad λ ÷ π × 180° 1.74845048} ÷ 3.1415926535 × 180° lon = 100.178833°
    Breite in Grad φ ÷ π × 180° -1.14992673 ÷ 3.1415926535 × 180° lat = -65.885948°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 102010 KachelY 97738 1.74845048 -1.14992673 100.178833 -65.885948
    Oben rechts KachelX + 1 102011 KachelY 97738 1.74849841 -1.14992673 100.181579 -65.885948
    Unten links KachelX 102010 KachelY + 1 97739 1.74845048 -1.14994631 100.178833 -65.887070
    Unten rechts KachelX + 1 102011 KachelY + 1 97739 1.74849841 -1.14994631 100.181579 -65.887070
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-1.14992673--1.14994631) × R
    1.9580000000019e-05 × 6371000
    dl = 124.744180000121m
    Rechte Seite abs(φORUR) × R abs(-1.14992673--1.14994631) × R
    1.9580000000019e-05 × 6371000
    dr = 124.744180000121m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(1.74845048-1.74849841) × cos(-1.14992673) × R
    4.79300000000293e-05 × 0.408554318001519 × 6371000
    do = 124.756975910286m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(1.74845048-1.74849841) × cos(-1.14994631) × R
    4.79300000000293e-05 × 0.40853644659133 × 6371000
    du = 124.751518660192m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-1.14992673)-sin(-1.14994631))×
    abs(λ12)×abs(0.408554318001519-0.40853644659133)×
    abs(1.74849841-1.74845048)×1.78714101892741e-05×
    4.79300000000293e-05×1.78714101892741e-05×6371000²
    4.79300000000293e-05×1.78714101892741e-05×40589641000000
    ar = 15562.3662796486m²